Research
Our research
Dr. Tanya Renner and members of her laboratory explore evolutionary patterns and processes that drive functional diversification. We are particularly interested in how multi-species interactions shape diversity on a genome-wide scale and influence form and function. We use plants and insects as models to study adaptation and current projects examine the underlying genetics and evolution of chemical and structural defense. Our research combines experimental biology with methods in whole genome sequencing, transcriptomics, and phylogenetics.
We seek to understand how plants and insects acquire novel phenotypes through co-option of existing genes, tissues, and organs. Specifically, we investigate the role, regulation, and diversity of chemical defense genes, and examine the evolution of multi-step enzyme-catalyzed pathways that form defensive compounds in specialized tissues and organs. This research has broad implications for understanding how plants repurpose defense genes for nutrient acquisition and which genes are key players in the formation of compounds important for insect defense.
Chemical defense in insects
Our research seeks to identify which genes are essential for the formation of chemicals that provide defense against predators. Ground beetles (Coleoptera: Carabidae) are an ideal model for understanding how genetic variation drives functional diversification of chemical biosynthesis, as members of this diverse (~40,000 species) lineage produce >250 individual compounds – sometimes at extremely hot temperatures (>100 degrees Celsius). Our group uses methods in tissue-specific comparative transcriptomics to identify genes highly expressed within specialized tissues and organs, which are generally thought to be sites of chemical biosynthesis. Through collaborations with researchers at other U.S. institutions, we have combined results of transcriptome sequencing with methods in traditional gas chromatography–mass spectrometry (GC/MS) to characterize roles the roles our candidate genes play in the biosynthesis of defensive compounds. Our work has been funded under NSF DEB 1762760 to study the genetic basis, biosynthetic pathways and evolution of geadephagan chemical defense. This project addresses how the bombardier beetle evolved its explosive defense abilities. For more info, see this video and article to learn about our collaborative research with Kip Will (UC Berkeley), Wendy Moore (U. Arizona), and Athula Attygalle (Stevens Institute of Technology). For additional publications on carabid beetle chemical defense, see Rork et al. 2021 J Chem Ecol. and Rork & Renner 2018 J Chem Ecol.
In addition to our genetic studies, we have worked toward understanding the complex morphology of the tissues responsible production of these chemicals. Our Arthropod Struct Dev (Rork et al. 2019) publication revealed for the first time resilin in an insect glandular duct system, which may serve to manage pressure generated by reservoir pump contraction and prevent autointoxification. This integrative research has the potential to advance understanding of enzyme-catalyzed pathways and the processes by which they have evolved, as well as how toxic compounds can be stored within specialized tissues and organs. For more information, see this media release and article.
Watch graduate student Adam Rork discuss our research into how beetles use chemicals to ward off predators.
Above: graphical abstract of methods used in Rork et al. 2021 J Chem Ecol.
Above: H. pennsylvanicus secretory lobe, Rork et al. 2019 Arthropod Struct Dev.
Interplay between chemical defense & nutrient acquisition in plants
We examine the extent that co-option has played in the functional diversification and regulation of defense proteins used in prey digestion among independently evolved carnivorous plants. Carnivorous plants provide ideal model systems for investigating both evolutionary transitions and convergence, because this unusual adaptation arose multiple times among angiosperms (possibly 10 times, among 5 orders) with remarkable cases of morphological and molecular convergence across deep time. Shared among these lineages is the ability to digest metazoans as a means to obtain essential nutrients (primarily nitrogen and phosphorus), a process that is determined in part by suites of digestive enzymes associated with morphologically diverse modified leaves that serve as trapping mechanisms. In all carnivorous plants studied so far, evidence points to co-option of common defense proteins for prey-responsive functions such as digestion; however, details concerning the origins, evolution and mechanisms of action of the relevant gene families remain only poorly understood. Our research is currently funded by an early career HFSP Early Career Grant, NSF DEB 2030871 and under NSF DEB 1011021. For publications, see for example Lan et al. 2018 Proc Natl Acad Sci USA, Renner et al. 2018 & Matusikova et al. 2018 “Carnivorous Plants: Physiology, Ecology, and Evolution” (peer-reviewed book chapters), Michalko et al. 2017 Planta, Renner & Specht 2013 Curr Opin Plant Biol, and Renner & Specht 2012 MBE. For more information, see this article, another article, and interview.
The diversity of specialized morphological adaptations that carnivorous plants use to trap and digest insects provides an optimal system for studying the extent at which plant-insect interactions drive the evolution of plant form and function. Within the Caryophyllales lineage of carnivorous plants, we have investigated leaf morphology within a phylogenetic framework, including the evolution of multicellular glands and specialized slippery surfaces for nutrient acquisition and prey capture. Shared among the noncore Caryophyllales is the presence of various types of multicellular glands that are distributed across the above-ground portion of the plant. In carnivorous taxa, glands associated with leaves have been modified to capture and digest insects and are sessile, stalked, or pitted, and can contain xylem and phloem. Families sister to the carnivorous Caryophyllales have glandular trichomes with similar morphologies, but function in the immobilization of herbivorous insects (defense) and perform additional ecological roles (e.g. protection in halophytic conditions and seed dispersal). This may suggest that such basic structures have been modified in the evolution of carnivorous plants to function specifically in carnivory.
Watch Tanya Renner talk about carnivorous plants as part of Penn State's The Symbiotic Podcast: Rule-breakers of the Plant World.